作者文章: Fenng

开源数据库 Sharding 技术 (Share Nothing)

注:此文首发于 《程序员》杂志 2008 年 7 月刊。

从 Shard 到 Sharding

“Shard” 这个词英文的意思是”碎片”,而作为数据库相关的技术用语,似乎最早见于大型多人在线角色扮演游戏(MMORPG)中。”Sharding” 姑且称之为”分片”。

Sharding 不是一门新技术,而是一个相对简朴的软件理念。如您所知,MySQL 5 之后才有了数据表分区功能,那么在此之前,很多 MySQL 的潜在用户都对 MySQL 的扩展性有所顾虑,而是否具备分区功能就成了衡量一个数据库可扩展性与否的一个关键指标(当然不是唯一指标)。数据库扩展性是一个永恒的话题,MySQL 的推广者经常会被问到:如在单一数据库上处理应用数据捉襟见肘而需要进行分区化之类的处理,是如何办到的呢? 答案是:Sharding。

Sharding 不是一个某个特定数据库软件附属的功能,而是在具体技术细节之上的抽象处理,是水平扩展(Scale Out,亦或横向扩展、向外扩展)的解决方案,其主要目的是为突破单节点数据库服务器的 I/O 能力限制,解决数据库扩展性问题。

事关数据库扩展性

说起数据库扩展性,这是个非常大的话题。目前的商业数据都有自己的扩展性解决方案,在过去相对来说比较成熟,但是随着互联网的高速发展,不可避免的会带来一些计算模式上的演变,这样很多主流商业系统也难免暴露出一些不足之处。比如 Oracle 的 RAC 是采用共享存储机制,对于 I/O 密集型的应用,瓶颈很容易落在存储上,这样的机制决定后续扩容只能是 Scale Up(向上扩展) 类型,对于硬件成本、开发人员的要求、维护成本都相对比较高。

Sharding 基本上是针对开源数据库的扩展性解决方案,很少有听说商业数据库进行 Sharding 的。目前业界的趋势基本上是拥抱 Scale Out,逐渐从 Scale Up 中解放出来。

Sharding 的应用场景

任何技术都是在合适的场合下能发挥应有的作用。 Sharding 也一样。联机游戏、IM、BSP 都是比较适合 Sharding 的应用场景。其共性是抽象出来的数据对象之间的关联数据很小。比如IM ,每个用户如果抽象成一个数据对象,完全可以独立存储在任何一个地方,数据对象是 Share Nothing 的;再比如 Blog 服务提供商的站点内容,基本为用户生成内容(UGC),完全可以把不同的用户隔离到不同的存储集合,而对用户来说是透明的。

这个 “Share Nothing” 是从数据库集群中借用的概念,举例来说,有些类型的数据粒度之间就不是 “Share Nothing” 的,比如类似交易记录的历史表信息,如果一条记录中既包含卖家信息与买家信息,如果随着时间推移,买、卖家会分别与其它用户继续进行交易,这样不可避免的两个买卖家的信息会分布到不同的 Sharding DB 上,而这时如果针对买卖家查询,就会跨越更多的 Sharding ,开销就会比较大。

Sharding 并不是数据库扩展方案的银弹,也有其不适合的场景,比如处理事务型的应用就会非常复杂。对于跨不同DB的事务,很难保证完整性,得不偿失。所以,采用什么样的 Sharding 形式,不是生搬硬套的。

Sharding与数据库分区(Partition)的区别

有的时候,Sharding 也被近似等同于水平分区(Horizontal Partitioning),网上很多地方也用 水平分区来指代 Sharding,但我个人认为二者之间实际上还是有区别的。的确,Sharding 的思想是从分区的思想而来,但数据库分区基本上是数据对象级别的处理,比如表和索引的分区,每个子数据集上能够有不同的物理存储属性,还是单个数据库范围内的操作,而 Sharding 是能够跨数据库,甚至跨越物理机器的。(见对比表格)

Sharding.png
(转载别忘了此图。注明全文来自 https://www.dbanotes.net)

Sharding 策略

数据 Sharding 的策略与分区表的方式有很多类似的地方,有基于表、ID 范围、数据产生的时间或是SOA 下理念下的基于服务等众多方式可选择。而与传统的表分区方式不同的是,Sharding 策略和业务结合的更为紧密,成功的 Sharding 必须对自己的业务足够熟悉,进行众多可行性分析的基础上进行,”业务逻辑驱动”。

Sharding 实现案例分析:Digg 网站

作为风头正劲的 Web 2.0 网站之一的 Digg.com,虽然用户群庞大,但网站数据库数据并非海量,去年同期主数据大约只有 30GB 的样子,现在应该更大一些,但应该不会出现数量级上增长,数据库软件采用 MySQL 5.x。Digg.com的 IO 压力非常大,而且是读集中的应用(98%的 IO 是读请求)。因为提供的是新闻类服务,这类数据有其自身特点,最近时间段的数据往往是读压力最大的部分。

根据业务特点,Digg.com 根据时间范围对主要的业务数据做 Sharding,把不到 10% 的”热”数据有效隔离开来,同时对这部分数据用以更好的硬件,提供更好的用户体验。而另外 90% 的数据因用户很少访问,所以尽管访问速度稍慢一点,对用户来说,影响也很小。通过 Sharding,Digg 达到了预期效果。

现有的 Sharding 软件简介

现在 Sharding 相关的软件实现其实不少,基于数据库层、DAO 层、不同语言下也都不乏案例。限于篇幅,作一下简要的介绍。

MySQL Proxy + HSCALE

一套比较有潜力的方案。其中 MySQL Proxy (http://forge.mysql.com/wiki/MySQL_Proxy) 是用 Lua 脚本实现的,介于客户端与服务器端之间,扮演 Proxy 的角色,提供查询分析、失败接管、查询过滤、调整等功能。目前的 0.6 版本还做不到读、写分离。HSCALE 则是针对 MySQL Proxy 插件,也是用 Lua 实现的,对 Sharding 过程简化了许多。需要指出的是,MySQL Proxy 与 HSCALE 各自会带来一定的开销,但这个开销与集中式数据处理方式单条查询的开销还是要小的。

Hibernate Shards

这是 Google 技术团队贡献的项目(http://www.hibernate.org/414.html),该项目是在对 Google 财务系统数据 Sharding 过程中诞生的。因为是在框架层实现的,所以有其独特的特性:标准的 Hibernate 编程模型,会用 Hibernate 就能搞定,技术成本较低;相对弹性的 Sharding 策略以及支持虚拟 Shard 等。

Spock Proxy

这也是在实际需求中产生的一个开源项目。Spock(http://www.spock.com/)是一个人员查找的 Web 2.0 网站。通过对自己的单一 DB 进行有效 Sharding化 而产生了Spock Proxy(http://spockproxy.sourceforge.net/ ) 项目,Spock Proxy 算得上 MySQL Proxy 的一个分支,提供基于范围的 Sharding 机制。Spock 是基于 Rails 的,所以Spock Proxy 也是基于 Rails 构建,关注 RoR 的朋友不应错过这个项目。

HiveDB

上面介绍了 RoR 的实现,HiveDB (http://www.hivedb.org/)则是基于Java 的实现,另外,稍有不同的是,这个项目背后有商业公司支持。

PL/Proxy

前面几个都是针对 MySQL 的 Sharding 方案,PL/Proxy 则是针对 PostgreSQL 的,设计思想类似 Teradata 的 Hash 机制,数据存储对客户端是透明的,客户请求发送到 PL/Proxy 后,由这里分布式存储过程调用,统一分发。 PL/Proxy 的设计初衷就是在这一层充当”数据总线”的职责,所以,当数据吞吐量支撑不住的时候,只需要增加更多的 PL/Proxy 服务器即可。大名鼎鼎的 Skype 用的就是 PL/Proxy 的解决方案。

Pyshards

http://code.google.com/p/pyshards/wiki/Pyshards
这是个基于 Python的解决方案。该工具的设计目标还有个 Re-balancing 在里面,这倒是个比较激进的想法。目前只支持 MySQL 数据库。

结束语

Sharding 是一项仍处于高速发展中的”老”技术,随着 Web 2.0 的发展,Sahrding逐渐从比较”虚”的概念变成比较”实”的运用思路,开放源代码软件大潮也给 Sharding 注入新的活力,相信会有越来越多的项目采用 Sharding 技术,也会有更多成熟的 Sharding 方案和数据库附加软件涌现。

你的站点 Sharding 了么?

EOF

另,本周末我讲参加这个活动:体验基于OpenSolaris的Web/企业应用,做一个题为《设计可扩展的面向互联网应用的MySQL数据库》的简单分享。欢迎杭州朋友光临指导。

Facebook 的 Scaling Out 经验

Facebook 其实对待技术的态度其实挺开放的。今天阅读了这篇 Scale Out, 工程师 Jason Sobel 介绍了在对付跨地域 MySQL 复制网络延迟的问题。

Cache 一致性问题解决思路

大量的 MySQL + Memcached 服务器,布署简示:

California (主 Write/Read)............. Virginia (Read Only)

主数据中心在 California ,远程中心在 Virginia 。这两个中心网络延迟就有 70ms,MySQL 数据复制延迟有的时候会达到 20ms. 如果要让只读的信息从 Virginia 端发起,Memcached 的 Cache 数据一致性就是个问题。

  • 1 用户发起更新操作,更名 "Jason" 到 "Monkey" ;
  • 2 主数据库写入 "Monkey",删除主、从两端 Memcached 中的名字值;
  • 3 在 Virginia 有人查看该用户 Profile ;
  • 4 在 Memcached 中没发现用户名字,从 Virginia Slave 数据库读取,因为网络延迟,结果读到了 "Jason";
  • 5 更新 Virginia Memcached 中的该用户名字为 "Jason";
  • 6 复制追上了,更新名字为 ""Monkey";
  • 7 又有人读取 Profile 了;
  • 8 在 Memcached 中找到了键值,返回 "Jason" (实际上造成业务冲突了)

解决办法挺有意思,在 SQL 解析层嵌入了针对 Memcached 的操作。

  • 1 用户发起更新操作,更名 "Jason" 到 "Monkey" ;
  • 2 主数据库写入 "Monkey",删除主端 Memcached 中的名字值,但Virginia 端 Memcached 不删;(这地方在 SQL 解析上作了一点手脚,把更新的操作"示意"给远程);
  • 3 在 Virginia 有人查看该用户 Profile ;
  • 4 在 Memcached 中找到键值,返回值 "Jason";
  • 5 复制追上更新 Slave 数据库用户名字为 "Monkey",删除 Virginia Memcached 中的键值;
  • 6 在 Virginia 有人查看该用户 Profile ;
  • 7 Memcache 中没找到键值,所以从 Slave 中读取,然后得到正确的 "Monkey" 。

这里面的一个简单的原则是: 更新后的数据,用户第一次读取要从数据库读,顺便扔一份到 Cache 里,而不是在写入的时候直接更新 Memcached 。避免写事务过大。

而写操作的原则是:一次写入,到处分发

第二个问题是关于”Page Routing”的 ,也很有参考价值。感兴趣的自己读一下吧。

EOF

另推荐一下: 分布式系统中的一致性和可用性,该文是上次在支付宝 QClub 活动的总结之二。

史冬鹏是我心目中的英雄

史冬鹏没能进决赛,但他尽力了。纵观大史一直以来在赛场上的表现,他是真正诠释体育精神的英雄。

赛前,我是多么希望史冬鹏能在这次”家门口”的比赛中夺得一枚奖牌,但这毕竟是比赛,胜负只在一瞬间。尽管以后还有更多的比赛,还有世锦赛,大史说”那毕竟不一样”,这是绝对的真心话!

刘翔几乎独占了所有可用的资源,留给大史的资源太少了。从这一点上来说,刘翔是一个团队在作战,而大史只是一个人在战斗! 赛前刘翔的信息铺天盖地,关注大史的文章少而又少。看过的文章中,只有《环球企业家》的这篇特刊《奔跑者》能让读者了解一下关于大史的更多信息。

史冬鹏,加油!期待你的精彩!

EOF

还要控诉一下冬日娜这”梅超风”,你能不能少说几句弱智的话? “没关系,毕竟你上次连第二轮还没跑进呢” ,这是人说的话么?

当有线电视遇上弹窗广告

刘翔退赛,没必要对一个用汗水打拼的运动员苛求太多。我们不过是看客。

为了看奥运,把停了半年多的有线电视续费了一下。前几天,杭州华数居然专门派人来送来一个新的遥控器。那个遥控器看起来功能蛮多,老婆还挺高兴,研究了半天。

自从用了这个遥控器,我就感觉不对劲儿,怎么赛事正精彩的时侯屏幕上会出来个小窗口提示有奖答题呢? 第一次看到以为是央视搞的,后来频繁的出现感觉有点不对,按遥控器的”退出”键,居然提示,”确定退出么?” 按”确定”,居然也要半天才能消失这个小浮动窗口。真是有些震惊啊,这下真的互动了,弹窗广告居然搞到电视上来了!

流氓会武术,谁都挡不住! 相信这个技术会被更多有线电视运营商采用的。到时候面对时不时的弹窗广告,加上原来就有的贴片广告,以及那些”精彩绝伦”的电视购物广告,这电视还能看下去么? 奥运过后,电视关闭!

EOF

有图有真相

有线电视的弹窗广告